The Zakharov–Kuznetsov equation in weighted Sobolev spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kawahara equation in weighted Sobolev spaces

Abstract The initialand boundary-value problem for the Kawahara equation, a fifthorder KdV type equation, is studied in weighted Sobolev spaces. This functional framework is based on the dual-Petrov–Galerkin algorithm, a numerical method proposed by Shen (2003 SIAM J. Numer. Anal. 41 1595–619) to solve third and higher odd-order partial differential equations. The theory presented here includes...

متن کامل

Isotropically and Anisotropically Weighted Sobolev Spaces for the Oseen Equation

This contribution is devoted to the Oseen equations, a linearized form of the Navier-Stokes equations. We give here some results concerning the scalar Oseen operator and we prove Hardy inequalities concerning functions in Sobolev spaces with anisotropic weights that appear in the investigation of the Oseen equations. Mathematics Subject Classification (2000). 76D05, 35Q30, 26D15, 46D35.

متن کامل

The Poisson equation in homogeneous Sobolev spaces

We consider Poisson’s equation in an n-dimensional exterior domain G (n≥ 2) with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certain Lq(G)-spaces there exists a solution in the homogeneous Sobolev space S2,q(G), containing functions being local in Lq(G) and having second-order derivatives in Lq(G). Concerning the uniqueness of this solution we ...

متن کامل

Interpolation Inequalities in Weighted Sobolev Spaces

In this paper we prove some interpolation inequalities between functions and their derivatives in the class of weighted Sobolev spaces defined on unbounded open subset Ω ⊂ Rn .

متن کامل

Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line

Studied here is the large-time behavior of solutions of the Korteweg-de Vries equation posed on the right half-line under the effect of a localized damping. Assuming as in [20] that the damping is active on a set (a0,+∞) with a0 > 0, we establish the exponential decay of the solutions in the weighted spaces L((x + 1)dx) for m ∈ N∗ and L(edx) for b > 0 by a Lyapunov approach. The decay of the sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2016

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2015.07.024